在線客服

售前咨詢
售后咨詢
微信號
Essay_Cheery
微信
澳洲代寫論文服務

五年專注英國論文代寫 信譽保證
turnitin檢測 保證原創率 高分通過

本公司成立以來,在澳洲代寫論文領域獲得了不錯的口碑,98%以上的客戶順利通過..歡迎大家進行咨詢和享受公司為你提供的全方位服務!不論你的英語論文有多難,deadline有多急,我們將給你帶來最專業可靠的澳洲代寫論文服務。

Order Now

Finance & Accounting 作業代寫

    Part 1 (10 marks)
    Compare and discuss the alpha, beta, factor loadings and idiosyncratic volatility for each stock for the full sample period. Specifically:
    As can be seen from appendix, the level of significanceALPHA = 0.05, the five proposed portfolioCo-linear regression coefficients were 1.00,1.00,0.998,1.001,and0.998. The adjusted coefficient of determination were 0.998,0.999,0.999,0.999, 0.999, which are very close to 1; standard error estimates are very close to zero, corresponding to the F statistics.
    Finance & Accounting  作業代寫
    Probability values are measured 0.000, highly significant, indicating that the regression model with three factors fit well, a high degree of interpretation.
    By appendix we can see that excess market returns (coefficient b), asCAPM single-factor model and the three-factor model common explanatory variables, all combinations of coefficients. By the t-test, and all signs of the coefficients are positive. On five combinations were transported using Excel statistical analysis software stepwise multiple regression analysis method, we found that the earliest
    Finance & Accounting  作業代寫
    Into the regression equation, i.e. the most relevant explanatory variables is the excess market returns. ThisDescription although excess market returns alone insufficient to fully explain a variable cross-section stock returns, Changes in the surface data, but yield different stocks and the market risk factor is indeed the difference betweenStock returns is caused by changes in cross-sectional data is one important reason. In other words, threeFactor model to a certain extent is the further improvement of the CAPM.
    Company size factor coefficients s, a combination of the three small companies are positive, and both passafter a significant level of 1% t-test. Although large-scale company s portfolio significantly through the 1%Level test, but the sign is negative. Excluding the Loss City than factors, only from company sizeup analysis, showing large and small two combinations respective coefficients s are positive, and the big combination
    Stock returns affect a significant factor. And from a point of view explains the small companies rather than large firms have higher excess returns of reasons - coefficient of sensitivity stronger.
    Book market ratio factor coefficient h, high book-market ratio for the four combinations, exceptB / M portfolio outside the rest of the sign is positive, two low-book market combined with a slope of more thanNegative. In addition to carrying a small middle-market ratio portfolio, the coefficients of the remaining five combinations througha significance level of 1% of the t test.
    Through the above models and the overall coefficient of each explanatory variable significance analysis results can be drawn
    Factors that affect stock returns by no means only this three, as well as price-earnings ratio, price, distributionMarket, a number of factors such as the company's fundamentals, but considering there is no different between the explanatory variablesCorrelation with the degree, all factors are included in the regression equation will create multiple collinearProblems, but reduces the model's credibility. And of course, the model contains too many variables andCloser to the real world, but the ease of use is obviously greatly reduced. Therefore, I believe that threeFactor model can be used as a convenient and practical tools to help investors in the stock marketfor analysis and forecasting.
    ?Part 2 (6 marks) ?You need to estimate the Fama-French three-factor model over two sub-periods: ?1. August 2005 to July 2008, and 2. August 2008 to June 2012 ?Discuss the differences in betas and factor loadings that you observe between the two periods for each company. What do the results imply about the Fama-French three-factor model? ?
    Regression model for the FF, the empirical results show that systemic risk population t-test values were passed l% significantLevel. Single factor CAPM model for reunification, also found that systemic risk population t-test values were adopted1% level of significance, once again confirms the mouth is an important impact on asset price volatility and reliability factors.
      XOM
    2005-2008 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%
    Intercept 0.00292648 0.000183429 15.95429446 1.09454E-18 0.00255546 0.0032975 0.00255546 0.0032975
    Excess Returns (step 2) 1.006216612 0.003367137 298.834449 3.8369E-67 0.999405934 1.01302729 0.999405934 1.01302729
    Size Factor -0.00966143 0.008999226 -1.073584515 0.289606899 -0.027864082 0.008541223 -0.027864082 0.008541223
    Value Factor 0.019146924 0.007066706 2.709455059 0.0099611 0.004853161 0.033440687 0.004853161 0.033440687
    2008-2013 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%
    Intercept 5.39284E-05 8.8872E-06 6.068093198 5.63678E-07 3.59043E-05 7.19524E-05 3.59043E-05 7.19524E-05
    Excess Returns (step 2) 0.999824857 0.000174657 5724.495378 7.1725E-109 0.999470636 1.000179079 0.999470636 1.000179079
    Size Factor 0.000460753 0.000366394 1.257534619 0.216656868 -0.000282329 0.001203835 -0.000282329 0.001203835
    Value Factor 0.000326047 0.000361124 0.902867076 0.37259823 -0.000406347 0.001058441 -0.000406347 0.001058441
     
     
    GOOG
    2005-2008 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%
    Intercept 0.002934 0.000179 16.43176623 4.00768E-19 0.002573246 0.003296 0.002573 0.003296
    Excess Returns (step 2) 1.003926 0.001666 602.458042 5.14459E-79 1.000555381 1.007297 1.000555 1.007297
    Size Factor -0.01427 0.008839 -1.6142714 0.114531592 -0.03214693 0.00361 -0.03215 0.00361
    Value Factor 0.023921 0.006965 3.434643988 0.001421101 0.009833642 0.038008 0.009834 0.038008
    2008-2012 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%
    Intercept 5.21E-05 8.99E-06 5.790695052 1.32342E-06 3.38204E-05 7.03E-05 3.38E-05 7.03E-05
    Excess Returns (step 2) 1.000017 0.000107 9354.206657 1.5065E-116 0.999799797 1.000233 0.9998 1.000233
    Size Factor 0.000478 0.000373 1.282419258 0.207892091 -0.00027782 0.001233 -0.00028 0.001233
    Value Factor 0.000284 0.000369 0.770477146 0.446044059 -0.00046393 0.001032 -0.00046 0.001032
     
     
    BA
    2005-2008 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%
    Intercept 0.003038 0.000174 17.49189 4.64999E-20 0.002686 0.003389 0.002686 0.003389
    Excess Returns (step 2) 1.006629 0.002179 461.9364 1.61871E-74 1.002221 1.011037 1.002221 1.011037
    Size Factor -0.01145 0.008401 -1.36321 0.180633926 -0.02844 0.00554 -0.02844 0.00554
    Value Factor 0.016331 0.006734 2.42521 0.020030155 0.00271 0.029951 0.00271 0.029951
    2008-2012 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%
    Intercept 5.33E-05 9.38E-06 5.685699 1.82853E-06 3.43E-05 7.24E-05 3.43E-05 7.24E-05
    Excess Returns (step 2) 0.999955 0.000135 7419.815 6.3105E-113 0.999682 1.000228 0.999682 1.000228
    Size Factor 0.000497 0.000372 1.335089 0.190228842 -0.00026 0.001252 -0.00026 0.001252
    Value Factor 0.000362 0.000418 0.865601 0.39244125 -0.00049 0.001209 -0.00049 0.001209
    Finance & Accounting  作業代寫 
     
    NAFC
    2005-2008 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%
    Intercept 0.002949 0.00019 15.51 2.84471E-18 0.002565 0.003334 0.002565 0.003334
    Excess Returns (step 2) 1.001013 0.001935 517.205 1.97394E-76 0.997098 1.004928 0.997098 1.004928
    Size Factor -0.01201 0.009439 -1.27238 0.2107716 -0.0311 0.007082 -0.0311 0.007082
    Value Factor 0.019936 0.007473 2.667864 0.011060929 0.004821 0.035052 0.004821 0.035052
    2008-2012 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%
    Intercept 5.09E-05 8.67E-06 5.866771 1.04709E-06 3.33E-05 6.85E-05 3.33E-05 6.85E-05
    Excess Returns (step 2) 0.99986 9.83E-05 10174.74 7.3009E-118 0.999661 1.00006 0.999661 1.00006
    Size Factor 0.000596 0.000369 1.6147 0.115107815 -0.00015 0.001346 -0.00015 0.001346
    Value Factor 0.000303 0.000355 0.8549 0.39826046 -0.00042 0.001023 -0.00042 0.001023
     
     
    LAD
    2005-2008 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%
    Intercept 0.003077 0.000201 15.2722 4.78E-18 0.00267 0.003485 0.00267 0.003485
    Excess Returns (step 2) 1.002782 0.001789 560.4921 8.59E-78 0.999163 1.006401 0.999163 1.006401
    Size Factor -0.01535 0.009452 -1.62407 0.112417 -0.03447 0.003768 -0.03447 0.003768
    Value Factor 0.018058 0.00731 2.470389 0.017975 0.003273 0.032844 0.003273 0.032844
    2008-2012 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%
    Intercept 5.36E-05 9.17E-06 5.841158 1.13E-06 3.5E-05 7.21E-05 3.5E-05 7.21E-05
    Excess Returns (step 2) 0.99998 3.97E-05 25219.09 4.7E-132 0.999899 1.00006 0.999899 1.00006
    Size Factor 0.000565 0.000403 1.403241 0.169112 -0.00025 0.001382 -0.00025 0.001382
    Value Factor 0.0003 0.000364 0.826267 0.414096 -0.00044 0.001038 -0.00044 0.001038
     Finance & Accounting  作業代寫
    As shown, each combination of RMRF yields are the same factors that the market excess return factors significantly correlated correlation coefficient close to 1, ie, the greater the market excess return factors, each combination of greater yields, which CAPM model analysis results are the same factors that each group of contracts SMB factors also positively related to firm size, but they are not very significant, BH, BL and BM three combinations of the correlation coefficient is low, averaging about 0.03, indicating that factors on the book market than large companies little effect on the yield of the stock and SH, SM and SL with three factors combined income rates with SMB correlation coefficients are high, an average of about 0.1, indicating that stocks relative to large firms in terms of small-scale company stock returns rate is influenced by its scale factor Similarly, five combined market value than its book income rates with the correlation coefficient factor is less than 0, and are more significant, the average correlation coefficients are about -0.2, indicating that the greater the company's HML factor , its stock will lower the yield.
    Part 3 (4 marks) ?Provide a recommendation as to which of the five stocks you would advise an investor to purchase. You will need to provide an explanation as to how you reached your recommendation and any potential pitfalls of your recommendation.
    In determining the financial asset prices in a variety of factors, systemic risk is fundamental factors session. FamaandFrench (1993) study suggests that except B, the scale factors and the difference between the carrying value ratio reflects the listed companiesProfitability and sustainability of its characteristics differ significantly, so in addition to systemic risk, the need to add two pairs of risk-sensitiveFactors that sense of scale factor (Size) and book value ratio factor (B / M). The easiest method of proof that recognize highRisk bring high returns - small companies and low book value means a higher risk than the company, but also meansHigher expected rate of return.
    The recommendation for the investors should be the XOM and GooG , since they have a higher beta in the FF model as well as a more steady performance on the analysis above.From the above analysis of the correlation regression analysis, we draw: in the stock market, there are not only significant market premium, but there is also a significant size premium and the premium that book market than either large or small companies company stock returns , not only by the market premium factors, but also by the scale factors and the company carrying market ratio factors significantly affected, but the factors on stock returns of effect size is not the same market premium factors on stock returns the greatest impact, and presented positive stock returns and scale factors are also positively correlated, but the scale factors on stock returns significantly less than the impact of the stock market premium factor
    Income rates with the company carrying a negative correlation factors than market value, ie the yield value stocks than growth stocks yield regression results from the model, we have seen the goodness of fit for each model were higher, indicating that the model interpretation ability, namely the applicability of the model in the national stock market strong.

    APPENDIX

    XOM
    SUMMARY OUTPUT         IR=var of residuals      
                     
    Regression Statistics              
    Multiple R 0.999489919              
    R Square 0.998980097              
    Adjusted R Square 0.998941367              
    Standard Error 0.001712989              
    Observations 83              
                     
    ANOVA                
      df SS MS F Significance F Upper 95% Lower 95.0% Upper 95.0%
    Regression 3 0.227056734 0.075685578 25793.12391 4.9283E-118 0.001922696 0.001163921 0.001922696
    Residual 79 0.000231812 2.93433E-06     1.009380063 0.994915653 1.009380063
    Total 82 0.227288546       0.005059145 -0.028913543 0.005059145
                0.022889156 -0.00723498 0.022889156
      Coefficients Standard Error t Stat P-value Lower 95%      
    Intercept 0.001543309 0.000190604 8.096936423 5.64336E-12 0.001163921      
    Excess Returns (step 2) 1.002147858 0.003633452 275.8115037 1.208E-119 0.994915653      
    Size Factor -0.011927199 0.00853392 -1.397622484 0.166138992 -0.028913543      
    Value Factor 0.007827088 0.007567167 1.034348615 0.304129201 -0.00723498      
     
     
    GOOG
    SUMMARY OUTPUT       IR=var of residuals      
                     
    Regression Statistics              
    Multiple R 0.999854              
    R Square 0.999708              
    Adjusted R Square 0.999697              
    Standard Error 0.001711              
    Observations 83              
                     
    ANOVA                
      df SS MS F Significance F   Lower 95.0% Upper 95.0%
    Regression 3 0.792289 0.264096429 90216.86939 1.6822E-139   0.001165 0.001921
    Residual 79 0.000231 2.92735E-06       0.997556 1.005298
    Total 82 0.792521         -0.03031 0.003887
                  -0.00633 0.023594
      Coefficients Standard Error t Stat P-value Lower 95% Upper 95%    
    Intercept 0.001543 0.00019 8.129671999 4.87204E-12 0.001165405 0.001921    
    Excess Returns (step 2) 1.001427 0.001945 514.948733 4.7165E-141 0.99755644 1.005298    
    Size Factor -0.01321 0.00859 -1.537993792 0.128046016 -0.03031052 0.003887    
    Value Factor 0.008631 0.007517 1.148165988 0.254364923 -0.00633168 0.023594    
     
     
    BA
    SUMMARY OUTPUT              
                     
    Regression Statistics              
    Multiple R 0.999787              
    R Square 0.999574              
    Adjusted R Square 0.999558              
    Standard Error 0.001715              
    Observations 83              
                     
    ANOVA                
      df SS MS F Significance F      
    Regression 3 0.544789 0.181596 61775.03424 5.3E-133      
    Residual 79 0.000232 2.94E-06          
    Total 82 0.545021            
                     
      Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%
    Intercept 0.001564 0.00019 8.245759 2.89233E-12 0.001187 0.001942 0.001187 0.001942
    Excess Returns (step 2) 0.998859 0.002513 397.5391 3.5363E-132 0.993858 1.00386 0.993858 1.00386
    Size Factor -0.01194 0.008555 -1.39563 0.166735081 -0.02897 0.005089 -0.02897 0.005089
    Value Factor 0.009604 0.008017 1.197934 0.234524535 -0.00635 0.025561 -0.00635 0.025561
                     
     
    NAFC
    SUMMARY OUTPUT              
                     
    Regression Statistics              
    Multiple R 0.999849              
    R Square 0.999699              
    Adjusted R Square 0.999687              
    Standard Error 0.001708              
    Observations 83              
                     
    ANOVA                
      df SS MS F Significance F      
    Regression 3 0.76422 0.25474 87350.84236 6E-139      
    Residual 79 0.00023 2.92E-06          
    Total 82 0.764451            
                     
      Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%
    Intercept 0.001565 0.000189 8.296996 2.29744E-12 0.001189 0.00194 0.001189 0.00194
    Excess Returns (step 2) 1.001849 0.002017 496.7978 8.0243E-140 0.997835 1.005863 0.997835 1.005863
    Size Factor -0.01364 0.00861 -1.5847 0.11702912 -0.03078 0.003493 -0.03078 0.003493
    Value Factor 0.007431 0.007559 0.983038 0.328589906 -0.00762 0.022477 -0.00762 0.022477
     
     
    LAD
    SUMMARY OUTPUT              
                     
    Regression Statistics              
    Multiple R 0.999965              
    R Square 0.99993              
    Adjusted R Square 0.999928              
    Standard Error 0.001682              
    Observations 83              
                     
    ANOVA                
      df SS MS F Significance F      
    Regression 3 3.21289 1.070963 378332.4 4.3E-164      
    Residual 79 0.000224 2.83E-06          
    Total 82 3.213114            
                     
      Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%
    Intercept 0.001575 0.000186 8.472455 1.04E-12 0.001205 0.001945 0.001205 0.001945
    Excess Returns (step 2) 0.998147 0.001027 971.7088 7.8E-163 0.996103 1.000192 0.996103 1.000192
    Size Factor -0.00645 0.008965 -0.71993 0.473696 -0.0243 0.011391 -0.0243 0.011391
    Value Factor 0.010024 0.007441 1.347138 0.181787 -0.00479 0.024834 -0.00479 0.024834
     
英国代写_数学代写_c++/c代写_留学生代写怎么查出来?

在线客服

售前咨询
售后咨询
微信号
Badgeniuscs
微信